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On Generalized Gaussian Quadrature 

By Yudell L. Luke, Bing Yuan Ting and Marilyn J. Kemp 

Abstract. A general interpolation formula is derived such that when it is multiplied 
by a weight function and integrated, the result becomes a generalized Gaussian quad- 
rature scheme which allows for an arbitrary number of preassigned nodes. The errors 
in the interpolation and quadrature formulas are studied. All of this generalizes 
previous results of the first-named author where no preassigned nodes were permitted. 

I. Introduction. In a previous paper, Luke [1] showed that if a set of poly- 
nomials satisfies an orthogonality relation with respect to integration, the set also sat- 
isfies an orthogonality relation with respect to summation. The orthogonality rela- 
tions give rise to two representations of an arbitrary function f(x) in series of the 
orthogonal polynomials q,(x). One is infinite with coefficients ck; the other is com- 
posed of a finite number of terms, say n + 1, with coefficients dk n. A connection 
between these coefficients is established. The error in the finite interpolation formu- 
la is characterized in terms of the coefficients Ck. Integration of the finite interpola- 
tion formula leads to the Gaussian quadrature formula and the error in this formula 
is expressed in the form T,70c2 +2+sg2n+2 where the coefficients gk depend only 
on the system of orthogonal polynomials and the associated weight function. Closed 
form expressions for the early gk's are given in the cases where the orthogonal poly- 
nomials are those of Jacobi, Laguerre, Hermite and Bessel. 

The purpose of this paper is to extend the results noted above by developing a 
generalized interpolation formula from which we derive a generalized Gaussian quad- 
rature scheme to include an arbitrary number of preassigned nodes. If (a, b) is the 
interval of integration and if the preassigned node(s) is at a or at both a and b, then 
the integration formulas often go by the names of Radau and Lobatto, respectively. 
The error analyses noted above are applied to the generalized case. A shortcoming 
of the previous paper is the lack of numerical examples to illustrate use of the error 
formulae. In this paper, we develop several numerical examples to manifest the ef- 
ficiency of the error formulas for Gaussian, Radau and Lobatto quadrature schemes. 

This paper assumes familiarity with [1]. We restate the main results of that 
paper without giving proofs. 

II. Some Basic Equations. Let 

n 
(1) qn(x) =E akn xk 

k=0 
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be a set of orthogonal polynomials such that 

(2) rjW(x)qn(x)qr(x)dx hn6nr, 

6nr 0 if n $ r, nr =1 if n = r. 

m 
(3) W(x) = W(x)&2m(x), 21n(x) = JJ - aj), 

i=l1 

where W(x) and w(x) are one signed for a < x < b. These polynomials satisfy the 

three term recurrence formula 

(4) qn + 1 (x) = (AnX + Bn)qn(X) - Cqn 1(x), n > 0, 

a 
-n+l,n+1 

A 
nhn c- An aa C A h C0 

= , 
nl,fn n-i n-1 

(5) B =A -r r = , n>O, r =0. n~ An(rn +rr n) na, 
n,n 

We also have the Christoffel-Darboux formula 

(6) E hjqk(x)qy) = (A h )-1 qn+1(x)qn(y) - qn(x)qn +(y) 
k=O 

We point out that the results given here reduce to those given in [1] if we now 

put m = 0. However, we must caution the reader that the notations qn(x), An, Bn Cn, 
etc. are used in both places. Thus the reader will understand the quantities have dif- 

ferent values in the two contexts unless indeed m = 0. 

III. The Interpolation Formulas. Let fn +m (x) be the polynomial of degree 

n + m such that 

f(Xk) = n +m (Xk)l k = O, 1, . ,n, qn+i(xk) 
= Ol 

(7) 
f(a;) =fn+m (a.), j= ,2,...,m. 

Then by use of the Lagrangian interpolation formula and the Christoffel-Darboux 

formula, 

(8) f(x) fn+m(X) + Rn+m+1 (x), 

(9) fn + m (X) =Am (X) dk, nqk(X) + qn + 1 (X) Xa )fQ ) (a 
k=0 1(x - a-E a)n+1( 

(10) d _Anh n qk(xi)f(xi) 
dk,n = hk i=O ?(xj)q (xj)qn+1(xi) 

Let 

(11) V(n) = Anh n q1(x )qk(Xi) 
jk k i=0 n n(i 
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Then Luke [1] proved that 

(12) V( 6jk= J<n, k<n. 
j,k k 

We also have the following properties: 

(13) hk ~n =h. V(n 3k k I kn1) for all and k, 

(14) V -n) = V -n) 0 for allj and k, j,n+l1 n+l,k 

(15) V(n()2 =-C _ C Vn(n) 15) ~~~~n +2,k n+l n,k' 

If a = b and qn(X) is even or odd with n even or odd, respectively, then 

(16) Vn) -0 if j + k is odd, for all n, 

O)2A nhn [n/21 q i(x y)qk(xI) 
(17) ik h>2 q + (x)q (x) 

k 'y=0O ynl 

if j + k is even and n = 2r - 1 is odd, and 

(18) () =2Anhn n/2 qi(x,)qk(Xy) +Anhn_q_(_)qk() 
jk k y= ?qn + 1(x) n (Xf) hkqn +1()n ( ) 

if j + k and n are both even. 
A useful result is a recursion formula for V(n) n + r, k' 

V(n) =B _n+- vn) -C V(n 
n+r,k \ +r- 1 Ak Jn+r-l ,k n+r-1 n+r-2,k 

An+r_lhk+l An+rilhk lCk V(n) (1 9) + Akhk + k1k k0 
Akh k n+r-l,k+l A hk n+r-l,k-1' k>0, 

Vn +r- 1,-1 =? 

(20) V(n) =0 if k n-r+ 1, k7/n if r-0, n+r,k 

(21) -- ~~~~~~~n+lAn+2 
.. 

n+r-1 hn+1 (21) V(n+)r + A A r > 2A. n r n- +2 
n-r+2An-r+3 .. nhn-r+2 

In our later work, we have need for the coefficients V(n) for k = O, 1, . . .. 2n+2+s-k,kfok=0,1 . 

n and s = 0, 1, 2, . . . which follow from (19)-(21). 
We consider 

(22) Qm(x)F(x) = f(x) - qn+( 
E2 (x)f(a.) 

(22) m n + , (x)~~~ (x - a.)U' (a) 

and suppose that F(x) can be represented by an expansion in series of the orthogonal 
polynomials qk(x) which is uniformly convergent in [a, bi. Thus 

00 

(23) F(x) = Ck qk(X)' 
k=0 

(24) c =h- 1'b Q (x)w(x)F(x)q,(x)dx. 
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Clearly 

(25) f(xk) = Um(Xk) C cJq,(Xk) 
j=O 

Put this in (10) and so obtain the important relation 
00 

(26) dk,n =Ck + Ec2n+2+s-k,k' 
s= 0 

Next we give an interesting expansion for the error in the interpolation formula 
(8). From (8)-(10), (22), (23) and (26), we have 

00 i k-2 
(27) Rn+m1(x)-(x)2 q V- 

n fl~lq l(x); (27) Rn +m +1 (X = m (X) ? Cn +k j n +k(X) ?: n +k, n-j qn-j()5 

and in view of the properties of V(n), we get 

An+2An+lhn+l 
n m+ ()Qm(x:n+cI qn+l(x)+ + [ + ()+C+ lqn l(X)] 

(28) nl+C 3 Lqnf+3( ) A A hl qhn n-() 

Cn+ (e-n2Bn +2)q (X)] +* } 

and finally with the aid of (4), 

(29) Rn +m +l (x) = Q2m (X)Cn + l qn+1 (x)_ [l + c n2(A n +lX + B n +dl +**3 

IV. Generalized Gaussian Quadrature Fonnula. Multiply (8) by w(x) and in- 
tegrate from a to b, and so obtain 

w(x)f (x)dx = (mn) f (x) + 2 i4(n7) f(a.) + S2n+m+2 

?x(m), =An hn 
k., n E (x)q (x,)q b + 1(x) 

"(n) ('(a )q (a b' Wd)2 x) x, 
j,m m j n+1 i ( a x-a. 

b 
S2++2 = W(X)R+m + 1(X) dx. 

This is the generalized Gaussian quadrature formula. When m = 0 it reduces to the 
Gaussian quadrature formula. By using arguments analogous to those of Krylov [2], 
it could be shown that (30) has degree of precision 2n + m + 1. 

We now show how to express the error in terms of the coefficients cn. Using 
equations (8)-(10), (22), (23), and (30), we obtain 
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b 

S2n+m+2 
= 

W(X)(f(X)-fn + m (X)) dx 

(31) = E Ckf W(x)Sm(x)qk(x)dx dk k,nJ W(X)m (x)qk(X)dX 

aO (Co - do d) 

by virtue of orthogonality, and in view of (26), it follows that 

(32) S2n+m+2 E c2n+2+sg2n+2+s' 
s=O 

(33) g2 2n+2+s= 2n+2+s,Oe 

The error formula is quite interesting in that the c's depend on f(w), w(x) and 

the system of orthogonal polynomials while the gn's depend only on the system of 

orthogonal polynomials. Following the procedure developed by Luke [1], we can 

write the gn's in terms of the coefficients An, Bn, Cn and hn. Thus from (21), 

An+1An+2 * 2. h A n+1 
(34) 92n+2 A A A a 

and further coefficients can be deduced with the aid of the recursion formula (19). 

For details, see the reference cited. 

V. Additional Comments. In this section we consider some aspects of our 

representation for the error, and then compare our approach with that of other workers. 

In our work we tacitly assume w(x) and f(x) are given in analytic form. Further, 

the form of f(x) is of such complexity that an exact representation for the coefficients 

cn from which numerical values are readily extracted is not available. This, of course, 

is to be expected, for otherwise we would have no problem as co is the desired integral. 

If w(x) is known and f(x) is given by experimental data, there is no need to resort to 

sophisticated integration formulas and approximations based on piecewise continuous 

line segment approximations to f(x) are about the best one can do. It should be clear 

that use of our integration formulas and attendant error analyses require some mathe- 

matical sophistication. The processes are designed for high level accuracy and realistic 

estimates of the error (see numerical examples). 

We now discuss related analyses of other workers. If f(x) is analytic on and within 

a completely closed simple contour C which has the segment [a, b] in its interior, then 

it is known that the error in the Gaussian quadrature formula can be expressed as a 

contour integral. Thus with m = 0, 

(35) S2n+2 = (27ri)1 Tr q(z) dz, 

(36) n 
b W(tq n(t) dt, in (z) 

z t 
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and both n (z) and qn (z) satisfy the same recurrence formula. This representation was 
first introduced by Barrett [31. For the case of the Jacobi polynomials (a = - 1, 
b = 1), he uses an asymptotic representation for j,(z)/qn(z) and under the assumption 
that f(z) is analytic on and within a certain ellipse with foci at z = ?1 except for poles 
on this ellipse, he obtains an asymptotic estimate for S2n+2' The Gauss-Laguerre and 
Gauss-Hermite quadratures are also discussed. Analyses similar to that of Barrett for 
Gauss-Legendre, -Laguerre and -Hermite quadrature have been given by McNamee [41, 
and studies similar to that of Barrett for Gauss-Legendre and Chebyshev (first kind) 
quadrature have been treated by Chawla and Jain [51, [61. 

If f(x) is analytic as above and is expanded in series of Legendre polynomials, 
Chawla [7] derives the error in the form of (32). Under the same assumptions, Basu 
[8] gets (26) and (32) for ordinary Gaussian quadrature (m = 0). However, he does 
not give the recursion formula for the coefficients (33). 

Donaldson and Elliott [91 generalize the work of Barrett [31 and others by 
allowing for Radau and Lobatto quadrature and by studying the error by means of a 
contour integral. In general, they require that f(z) is analytic on (a, b) except pos- 
sibly for-singularities at a or b, and f(z) may have poles or branch points or both near 
the segment of integration. It is not our intent to summarize in detail the work of 
Donaldson and Elliott. Suffice it to say that both the latter workers and we are con- 
cerned with 'exact' representations of the error and have the philosophy of using 
asymptotic methods to estimate such representations. 

As remarked, Donaldson and Elliott [91 assume f(z) is analytic except for 
branch points and poles and represent the error by a single integral. In our treatment, 
we do not suppose analyticity, but do require that F(x), see (22), can be represented 
as in (23). Our characterization of the error is in the form of an infinite series, each 
term of which is the product of two functions as explained in the discussion follow- 
ing (33). Once the system of orthogonal polynomials is specified, the gk's can be 
evaluated independently of the function being integrated. The Ck's depend both on 
the system of orthogonal polynomials and F(x). Quite often various integral repre- 
sentations for ck are available (see, for example, the work of Tuan and Elliott [10] 
and Luke [11 ) and under appropriate conditions one form might be better for 
achieving asymptotic estimates than the others. This flexibility can be advantageous. 
It is anticipated that an asymptotic estimate of the first term of the infinite series 
will give sufficient information on the error. 

The basic assumption in our approach, namely that F(x) can be represented as 
described by (23) vQrsus the assumption that f(x) and so also F(x) is analytic deserves 
further comment. If f(x) is to be expanded say in series of Chebyshev polynomials 
of the first kind, then the assumption of analyticity is much too strong. It is suf- 
ficient that f'(x) be continuous in [- 1, 1] . On the other hand, if f(x) is to be expand- 
ed in series of the Laguerre polynomials, then analyticity alone is not sufficient to 
guarantee the form described by (23). Criteria for the latter type representation, if 

known, are intimately connected with the choice of orthogonal polynomials. On the 

pragmatic side, best results can be expected if f(x) is analytic in as large a region in 
the complex plane as possible. Thus, all singularities on or near the axis of integration 
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should be incorporated into the weight function w(x). 

VI. Numerical Examples. In this section we illustrate the ideas of our paper 
for the examples eUX, a = 2 and (1 + x)- 1. In view of space limitations we present 
some data for Gaussian quadrature only of the above functions. Further data relating 
to Radau and Lobatto quadrature will be found in a report with the same title as this 
paper which is available to the reader upon request. This report also gives a detailed 
theoretical analysis of formulas relating to Gaussian, Radau and Lobatto quadrature 
of eaX and (1 + x)- 1. In our present version, some analytical formulas are presented. 
When without encumbering additional space, we can give formulas more general than 
actually needed for the computations, we do so. It is convenient to use hypergeo- 
metric notation and other symbols commonly employed in special functions. For 
these and other data, see Luke [11]. 

Example I. f(x) = e'x, a = 2. Here, we consider Gaussian quadrature and 
so let 

(37) a- 1, b = 1, w(x) = 1 whence a ==0, m = 0. 

Thus qn(x) is the Legendre polynomial of order n. If a = , it can be deduced from 
Luke [11, v. 2, p. 32, Eq. (7)], that 

00 

ax ckI(X), 
(38) k=O 

2(Tl/2a)'/2(k + Ca + ?)r(k + 2ca + 1) I 
Ck (2a)tr(k + a + 1) 

where P,(?a>)(x) is the Jacobi polynomial and I4(a) is the familiar notation for the 
modified Bessel function. Generally, the coefficients ck are not in such simple form 
and we must resort to asymptotic estimates. For the example at hand, we follow the 
discussion given by Elliott [12] and Luke [11, v. 1, pp. 295, 296]. With a = = 0, 
we get 

(39) C exp(a cosh 0 - (k + ?h)O)sinh 0 2 221/2 
k (cosh 0)l/ 

X cosh 0 = (1 + k2/a )?. 

The c*'s according to (38) and (39) are given in columns A and B, respectively, of 
Table 1.1. 

To illustrate interpolation and quadrature, let n = 2. The xk 's and dk 2's are 
given in Table 1.2. Values of ) and partial sums of the series for dk2 - Ck for 
k = 0, 1, 2 in accordance with (26) are given in Table 1.3. Clearly, the first term 
of the series is dominant. 

To illustrate the interpolation formula and its error, we use (8) and (27). Let 
x = 0.4. Then f(x) = e0.8 = 2.22554 093. We find f2(x) = 2.55001 and six terms 

of (27) gives the remainder -0.32447 which is correct. The first term of the series 

(27) gives the approximate remainder -0.29181 while the corresponding asymptotic 
estimate using column B of Table 1.1 gives -0.27629. The asymptotic estimate is 

quite reasonable considering the fact that n is small and a is not small with respect 
to n. 
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TABLE 1.1 
C k 

k A B 

0 1.81343 020 0.00000 000 

1 2.92314 823 2.14967 608 

2 1.75928 044 1.57099 058 

3 0.66319 766 0.62793 500 

4 0.18231 535 0.17667 631 
5 0.03943 333 0.03863 618 
6 0.00702 774 0.00692 664 

7 0.00106 469 0.00105 309 
8 0.00014 024 0.00013 903 

9 0.00001 634 0.00001 622 
10 0.00000 171 0.00000 170 

11 0.00000 016 0.00000 016 

12 0.00000 001 0.00000 001 

TABLE 1.2 
k Xk dk,2 

0 -0.77459 666 1.81113 622 

1 0.00000 000 2.90167 262 

2 0.77459 666 1.62227 245 

TABLE 1.3 

v (2) 
6+i-k,k 

i\k 0 1 2 

0 -0.33000 000 -0.54000 000 -0.75000 000 

1 0 0 0 

2 0.17875 000 -0.17600 000 -0.03500 000 

3 0 0 0 

4 0.06142 500 0.35100 000 -0.18937 500 

5 0 0 0 

6 0.11481 375 0.26784 000 0.61503 750 

7 0 0 0 

8 -0.01405 580 0.14397 750 0.22154 438 

dk,2 -Ck EC6+i-kV6+i-k,k 
i=O 

s\k 0 1 2 

0 -0.00231 915 -0.02129 400 -0.13673 651 

1 -0.00231 915 -0.02129 400 -0.13673 651 

2 -0.00229 408 -0.02148 138 -0.13698 248 

3 -0.00229 408 -0.02148 138 -0.13698 248 

4 -0.00229 397 -0.02147 565 -0.13700 904 
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For the quadrature formula (30), the weights X(Y) are 5/9, 8/9 and 5/9 for 

= 0, 1, 2 respectively. The approximate quadrature is 3.62227 while the exact 
value is 3.62686 041. Now ho/ao 0 = 2. Using three terms of (32) with the column 

A data of Table 1.1, we get the error 0.00459 which is correct. The first term of 

this series is 0.00464 and so is dominant. If we use the first term of (32) but with 

the appropriate asymptotic value from column B of Table 1.1, we get 0.00457 which 

is an excellent estimate of the error. 

As a remark aside, (26) might very well be of importance in other applications. 

Now dk,n is composed of a finite sum and is readily evaluated. The manner of com- 

puting V(n) has already been indicated. Let us suppose that an asymptotic formula 

for cr is sufficiently accurate at least for r > 2n + 2 - k, k = 0, 1, . . ., n. Then 

(26) can be used to give improved estimates for the early Ck's. For a numerical il- 

lustration, see the discussion following Table 2.3. 

Example II. f(x) = (1 + x)- 1. Again, we consider Gaussian quadrature. This 

time 

(40) a = 0, b = 1, w(x) - I whence a = 0, m = 0, 

and qn(x) is the shifted Legendre polynomial. The shifted Jacobi polynomial is 

denoted by R(?aO)(x) = P (?0)(2x-1). It is known (see Luke [11, v. 2, p. 31, 

Eq. (1)] ) that 
00 

(1 + x) = E CkRk)(X), 
(41) k=O 

(_()kk!F(f I??k, k +1) 

(k + o)k 2 1 + I + 2a 

Further, the Ck 's satisfy a three-term recurrence relation. (See Luke [11, v. 2, p. 159, 

(26)-(28)], where the parameters are so chosen to reduce the 3F2 to the appropriate 

2F1 after the manner of discussion given in connection with Eqs. (63)-(66) on 

p. 147 of that reference.) With x = 0 in (41), 

(42) 0 (_)k(( + 1)kCk 

k=O 

This together with the recurrence relation for Ck used in the backward direction is 

an effective technique to generate the ck's. These data for a. = 0= are given in 

column A of Table 2.1. As previously noted in the discussion surrounding (39), simple 

techniques for getting the Ck's to great accuracy will not as a rule be available in 

practice. However, asymptotic estimates of the Ck's are relatively easy to get and 

these are sufficient to estimate errors in interpolation and quadrature processes. For 

the example at hand, we follow Elliott [12], where ck is written in terms of a contour 

integral. Then, because f(z) = (1 + z)- 1 has a simple pole at z - 1, residue theory 
is applied to yield 

k 
(-) [27k(4 + 327)1 /2 

(43) Ck '- 3 x/7) 



1092 YUDELL L. LUKE, BING YUAN TING AND MARILYN J. KEMP 

and corresponding numerical values are listed in column B of Table 2.1. This result 
can also be deduced from Luke [11, v. 1, p. 237, Eq. (11)] . 

TABLE 2.1 

Ck 

k A B 

0 0.69314 718 
1 -0.23832 462 -0.21184 605 
2 0.05456 674 0.05140 247 
3 -0.01123 996 -0.01080 136 
4 0.00220 464 0.00213 991 
5 -0.00042 037 -0.00041 049 
6 0.00007 869 0.00007 715 
7 -0.00001 454 -0.00001 430 
8 0.00000 266 0.00000 262 
9 -0.00000 048 -0.00000 048 

10 0.00000 009 0.00000 009 

We turn now to the interpolation and quadrature formulas, putting n = 2. 
Table 2.2 gives the xk's and dk2's, while Table 2.3 gives the partial sums in the 
infinite series representation of dk*2 - Ck, (26). The necessary values of V,(2) are j,k 
the same as those in Table 1.3. 

TABLE 2.2 

k Xk dk,2 

0 1/2 - v%,150 0.69312 169 

1 1/2 -0.23809 524 
2 1/2 + V o/10 0.05291 005 

TABLE 2.3 
S 

dk2 
- 

Ck EC6+i-k 6+i-k,k 
i=O 

s\k 0 1 2 
0 -0.00002 597 0.00022 700 -0.00165 348 
1 -0.00002 597 0.00022 700 -0.00165 348 
2 -0.00002 549 0.00022 956 -0.00165 623 
3 -0.00002 549 0.00022 956 -0.00165 623 
4 -0.00002 549 0.00022 939 -0.00165 674 

To illustrate the interpolation formula and its error, we use (8) and (27). Let 
x = 1/3. Then f2(x) = 0.75485 whereas f(x) = 0.75. Using the first term of (27) 
and column A of Table 2.1, we get the approximate error -0.00458. The asymptotic 
e,stimate of the remainder obtained using the first term of (27) and column B of 
Table 2.1 is -0.00440. This is quite accurate considering the fact that n is small. 



ON GENERALIZED GAUSSIAN QUADRATURE 1093 

Notice that if one has asymptotic estimates for the Ck'S then the coeffilcients 
for k = 0, 1, . . ., n can be computed more accurately using in (26) the dkfn's of 
Table 2.2, asymptotic values for C2n+2+sk and the V,(k) given in Table 1.3. This 
gives co = 0.69314 668, cl - 0.23831 925, and c2 = 0.05451813, which is a con- 
siderable improvement of the asymptotic estimate to the values given in column A of 
Table 2.1. 

For the quadrature formula (30), the weights X(?) are 5/18, 4/9, and 5/18 for 

y = 0, 1, 2, respectively. The approximate integral is 0.69312 169 while the exact 
value is 0.69314 718. Using three terms of (32), we get 0.00002 549, which is the 
true error. The first term of (32) is 0.00002 597 while the asymptotic estimate of 
the first term, using column B of Table 2.1, is 0.00002 546, either one of which is 
sufficient to estimate the error. 
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